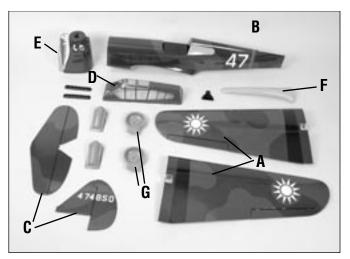
HANGAR 9

P-40 Warhawk

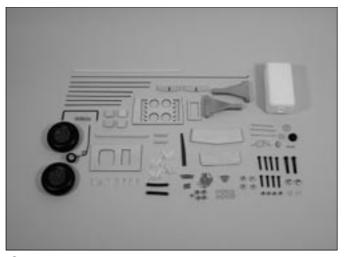
ASSEMBLY MANUAL

Specifications


Wingspan	. 64.6 in (1641.5mm)
Wing Area	709.4 sq in (45.8 sq dm)
Length	.52 in (1321mm)

Weight	5–8.5 lb (3.4 kg–3.85 kg)
Recommended Engines	.6175 2-stroke, .91-1.0 4-stroke
Radio 5-0	channel w/6 servos

Table of Contents


Table of Contents
Contents of Kit
Required Radio and Engine
Additional Required Tools and Adhesives4
Warning4
Covering Colors
Before Starting Assembly
Using the Manual
Warranty Information
Section 1: Joining the Wing Halves
Section 2: Attaching the Wing
Section 3: Installing the Horizontal Stabilizer
Section 4: Installing the Vertical Stabilizer
Section 5: Installing the Ailerons
Section 6: Installing the Elevators
Section 7: Rudder Installation
Section 8: Retract Linkage Installation
Section 9: Four-Stroke Engine Installation
Section 10: Two-Stroke Engine Installation
Section 11: Fuel Tank Assembly
Section 12: Radio Installation
Section 13: Linkage Installation
Section 14: Cowling Installation
Section 15: Canopy and Decal Installation
Adjusting the Engine
Control Throws
Recommended CG
Preflight
Range Testing the Radio
2004 Official AMA National Model Aircraft Safety Code50

Contents of Kit

Large Parts:

_		
A.	Wing Set	HAN2851
В.	Fuselage	HAN2852
C.	Tail Set	HAN2853
D.	Canopy	HAN2859
E.	Cowling	HAN2854
F.	Belly Pan	HAN2861
G.	Wheel Wells	HAN2860

Small Parts:

1.	3 ¹ / ₄ " Wheels	HAN2385
2.	Fuel Tank	HAN1987
3.	Engine Mount	HAN2033
4.	Tailwheel Assembly	HAN2855

Items Not Shown:

Decal Set	HAN2856
Pushrod Set	HAN2857
Cockpit and Exhaust Set	HAN2858

Required Radio and Engine

Radio Equipment

- 5-channel radio system (minimum)
- 5 Standard servos (JRPS537 recommended or equivalent)
- Low-Profile Retract Servo (JRPS791)
- 12" Servo Extension (JRPA098) (2)
- 18" Servo Extension (JRPA099) (2)
- Large Servo Arms w/Screw (JRPA212)
- Radio Switch (JRPA003)
- 900mAh receiver battery (minimum)

Recommended Engines

- .61 2-stroke
- 1.00 4-stroke

Evolution .61NT EVOE0610

Recommended JR® Systems

- XF421EX
- XP6102
- XP662
- X-378
- XP9303
- 10X

Saito 1.00 FA-AAC SAIE100

JR XF631

JR XP9303

Additional Required Tools and Adhesives

Tools

- Hobby scissors
- Drill
- Drill bits: 1/16", 5/64", 3/32", 1/8", 9/64", 5/32", 1/4"
- Felt-tipped pen
- Flat blade screwdriver
- Foam: 1/4"
- Hex wrench: 9/64", 3/16"
- Hobby knife
- Phillips screwdriver (small)
- Pliers
- Sandpaper
- Socket wrench: 11/32"
- Square
- T-pins

Adhesives

- 6-Minute Epoxy (HAN8000)
- 30-Minute Epoxy (HAN8002)
- Thin CA (PAAPT07)
- Medium CA (PAAPT01)
- CA Remover/Debonder (PAAPT16)
- Masking Tape (MMM20901)
- Canopy glue (Formula 560)

Other Required Items

- Epoxy Brushes (DUB345)
- Fuel tubing
- Mixing Sticks for Epoxy (DUB346)
- Paper towels
- Rotary tool w/sanding drum
- Rubbing alcohol
- Ruler
- String
- Wax paper

Warning

An RC aircraft is not a toy! If misused, it can cause serious bodily harm and damage to property. Fly only in open areas, preferably at AMA (Academy of Model Aeronautics) approved flying sites, following all instructions included with your radio and engine.

Covering Colors

• Olive Drab

HANU904 HANU876

Light Gray

HANU882

• Cocoa

Before Starting Assembly

Before beginning the assembly of your P-40 Warhawk, remove each part from its bag for inspection. Closely inspect the fuselage, wing panels, rudder, and stabilizer for damage. If you find any damaged or missing parts, contact the place of purchase.

If you find any wrinkles in the covering, use a heat gun or covering iron to remove them. Use caution while working around areas where the colors overlap to prevent separating the colors.

HAN100 - Heat Gun

HAN101 - Covering Iron

Using the Manual

This manual is divided into sections to help make assembly easier to understand and to provide breaks between each major section. In addition, check boxes have been placed next to each step to keep track of their completion. Steps with two boxes indicate that the step will require repeating, such as for a right or left wing panel, two servos, etc. Remember to take your time and follow the directions.

Warranty Information

Horizon Hobby, Inc. guarantees this kit to be free from defects in both material and workmanship at the date of purchase. This warranty does not cover any parts damage by use or modification. In no case shall Horizon Hobby's liability exceed the original cost of the purchased kit. Further, Horizon Hobby reserves the right to change or modify this warranty without notice.

In that Horizon Hobby has no control over the final assembly or material used for the final assembly, no liability shall be assumed nor accepted for any damage of the final user-assembled product. By the act of using the product, the user accepts all resulting liability.

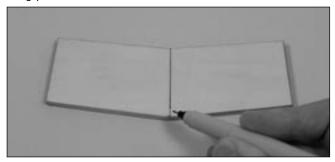
Once assembly of the model has been started, you must contact Horizon Hobby, Inc. directly regarding any warranty question that you have. Please do not contact your local hobby store regarding warranty issues, even if that is where you purchased it. This will enable Horizon to better answer your questions and service you in the event that you may need any assistance.

If the buyer is not prepared to accept the liability associated with the use of this product, the buyer is advised to return this kit immediately in new and unused condition to the place of purchase.

Horizon Hobby 4105 Fieldstone Road Champaign, Illinois 61822 (877) 504-0233 www.horizonhobby.com

Section 1: Joining the Wing Halves

Required Parts


- Left and right wing panels
- Wing joiner Wing dowels (2)

Required Tools and Adhesives

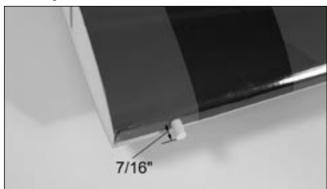
- Masking tape
- Epoxy brush
- Rubbing alcohol
- Drill
- Felt-tipped pen
- 30-minute epoxy
- Mixing stick
- Paper towels
- Drill bit: 1/4"
- Hobby knife


☐ Step 1

Draw a centerline on the wing joiner as shown. The shorter side of the joiner will be inserted into the outer wing panel.

☐ Step 2

Test the fit of the wing joiner into one of the wing panels. The joiner should slide into the panel with little resistance up to the line drawn on the joiner. Lightly sand the joiner as necessary to achieve a proper fit.


Note: The joiner will be angled towards the top of the wing.

☐ Step 3

Test the fit of the wing joiner into the remaining wing panel. The joiner should again slide into the panel with little resistance up to the line drawn on the joiner. Lightly sand the joiner as necessary to achieve a proper fit.

☐ Step 4

Remove the covering in the leading edge for the wing dowels. Locate a 1/4" x $1^3/_{16}$ " wing dowel. Use 30-minute epoxy to glue the wing dowels into the center panel. The dowels should be inserted so 7/16" of the dowel is left exposed in front of the leading edge. Repeat for both wing dowels.

☐ Step 5

Without using any glue, test fit the wing panel and center panel together using the wing joiner. The panels must fit together without any gaps top or bottom. If gaps exist, use a sanding bar to lightly sand the root ribs of both panels until the panels fit together perfectly.

Section 1: Joining the Wing Halves

Note: Read through the remaining steps of this section before mixing any epoxy.

Hint: It is extremely important to use plenty of epoxy when joining the wing panels. It will also be helpful to use wax paper under the wing joint to avoid gluing the wing to your work surface.

☐ Step 6

Mix approximately 1 ounce of 30-minute epoxy. Using an epoxy brush, apply a generous amount of epoxy to the wing joiner cavity of one of the wing panels.

☐ Step 7

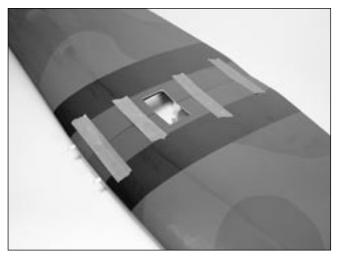
Completely coat half of the wing joiner with epoxy. Be sure to apply epoxy to the top and bottom of the joiner also. Insert the epoxy-coated side of the joiner into the wing joiner cavity up to the mark on the joiner. If you have used enough epoxy, it will ooze out of the cavity as the joiner is installed. Remove any excess epoxy using a paper towel and rubbing alcohol.

☐ Step 8

Apply epoxy to the exposed portion of the wing joiner.

☐ Step 9

Apply epoxy to root wing rib of both panels.


☐ Step 10

Carefully slide the wing panels together. Apply enough pressure to firmly seat the two wing panels together, causing any excess epoxy to ooze out from between the panels. Use rubbing alcohol and a paper towel to remove the excess epoxy. Check to make sure there are no visible gaps between the panels.

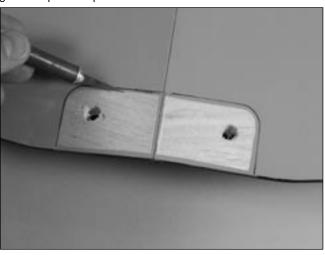
Section 1: Joining the Wing Halves

□ Step 11

Use masking tape to securely hold the wing panels together. Allow the epoxy to fully cure before continuing to the next section.

□ Step 12

Repeat Steps 1 through 11 for the remaining wing panel.


☐ Step 13

Remove the covering at the trailing edge for the two wing bolts. Center the wing bolt plate on the wing and trace the placement of the plate onto the wing using a felt-tipped pen.

□ Step 14

Remove the covering 1/16" inside the line drawn using a sharp hobby knife. Remove the lines from the wing using rubbing alcohol and a paper towel. Use medium CA to glue the plate in position.

☐ Step 15

Use a 1/4" drill bit and drill through the wing bolt place for the wing bolts.

Section 2: Attaching the Wing

Required Parts

- Assembled wing
- Fuselage
- 1/4-20 blind nut (2)
- 1/4" washer (2)

- Belly pan
- 1/4-20 x 1¹/₂" socket head bolt (2)

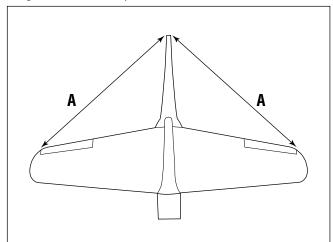
Required Tools and Adhesives

- 30-minute epoxy
- Pliers
- Hex wrench: 3/16"
- Hobby knife
- Felt-tipped pen
- Ruler

☐ Step 1

Locate the two 1/4-20 blind nuts. Mix a small amount of 30-minute epoxy and apply it to the barbs of the blind nut. Use pliers or a C-clamp to install the blind nut from the inside of the fuselage.

Note: Make sure no epoxy gets into the threads of the blind nut.


☐ Step 2

Use the two $1/4 \times 1^{1}/_{2}$ " socket head bolts and 1/4" washers to attach the wing to the fuselage.

☐ Step 3

Measure the distance between a point centered at the rear of the fuselage and each wing tip. The measurement will be equal if the wing is aligned correctly. If the measurement is not the same, slightly oval the hole for the wing bolts until an equal measurement is achieved.

Section 2: Attaching the Wing

☐ Step 4

Position the belly pan onto the wing. Trace around the belly pan using a felt-tipped pen.

☐ Step 5

Remove a strip of covering that is 1/8" wide inside the lines drawn in the previous step. Use care not to cut into the underlying wood, weakening the wing structure.

☐ Step 6

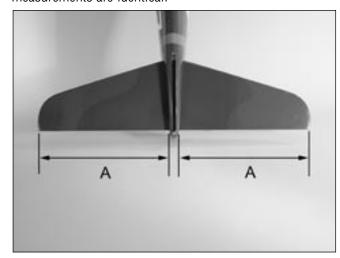
Use medium CA to glue the belly pan to the wing.

Section 3: Installing the Horizontal Stabilizer

Required Parts

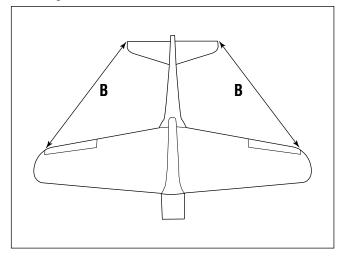
- Assembled wing
- Stabilizer
- Fuselage
- Elevator joiner wire
- 1/4-20 x 2" wing bolt (2)

Required Tools and Adhesives

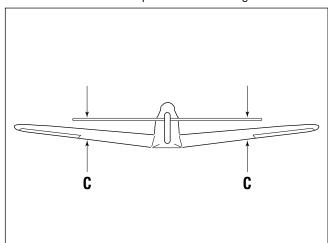

- Hobby knife
- Felt-tipped pen

Ruler

- Sandpaper
- 30-minute epoxy

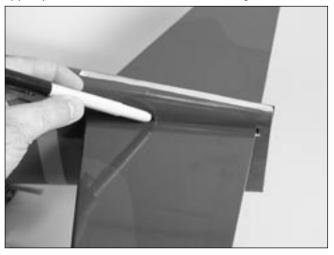

☐ Step 1

Remove the covering from the fuselage for the stabilizer slot. Slide the stab into the fuselage, making sure the stabilizer is as far forward as possible. Center the stab in the opening by measuring the distance from the fuselage to each tip. The stab is aligned when both measurements are identical.


☐ Step 2

Check the distance from each stab tip to each wing tip. These measurements must be equal for the stab to be aligned.

☐ Step 3

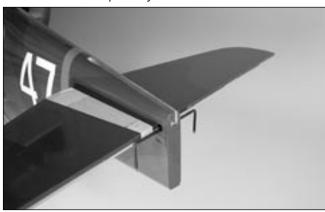

Check to make sure the wing and stabilizer are parallel. If they are not, lightly sand the opening in the fuselage for the stab until the stab is parallel to the wing.

Section 3: Installing the Horizontal Stabilizer

☐ Step 4

After verifying the alignment of the stabilizer, use a felt-tipped pen to trace the outline of the fuselage on the stab.

☐ Step 5


Remove the stab and use a hobby knife with a new blade to remove the covering 1/16" inside the lines just drawn. Use rubbing alcohol and a paper towel to remove the lines once they are no longer needed.

Note: Use care not to cut into the underlying wood and weaken the structure. Doing so could cause the stab to fail in flight, resulting in the loss of your airplane.

☐ Step 6

Slide the elevator joiner wire into the slot for the stabilizer. Slide the stabilizer partially back into the slot.

☐ Step 7

Mix 1/2 ounce of 30-minute epoxy. Apply epoxy to the top and bottom of the exposed wood of the stabilizer. Slide the stabilizer the rest of the way into the slot in the fuselage. Double-check the alignment to verify it's correct. Remove any excess epoxy using a paper towel and rubbing alcohol. Allow the epoxy to fully cure before continuing.

Section 4: Installing the Vertical Stabilizer

Required Parts

- Fuselage assembly
- Fin
- Tail wheel wire
- Steering control arm
- Tail wheel wire support bracket

Required Tools and Adhesives

- 30-minute epoxy
- 30-minute epoxy

Square

Hobby knife

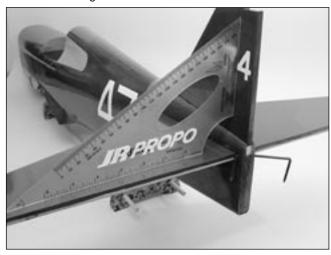
Pliers

Ruler

☐ Step 1

Test fit the fin to the fuselage. Slide the fin as far forward in the slot. Trace the outline of the fuselage onto the fin using a felt-tipped pen.

☐ Step 2


Remove the fin and use a hobby knife with a new blade to remove the covering 1/16" below the lines just drawn. Use rubbing alcohol and a paper towel to remove the lines once they are no longer needed.

Note: Use care not to cut into the underlying wood and weaken the structure. Doing so could cause the fin to fail in flight, resulting in the loss of your airplane.

☐ Step 3

Slide the fin back into the fuselage. Check the alignment of the fin to the stabilizer using a square. The fin must be 90 degrees to the stabilizer when properly aligned. If not, carefully sand the bottom of the fin to provide the clearance to align the fin.

☐ Step 4

Mix 1/2 ounce of 30-minute epoxy. Apply the epoxy to both the exposed wood on the fin and the slot in the fuselage. Use care not to get epoxy on the elevator joiner wire. Insert the fin and use tape to hold the fin in position until the epoxy fully cures.

Note: Check the alignment of the fin periodically to make sure it isn't moving while the epoxy cures.

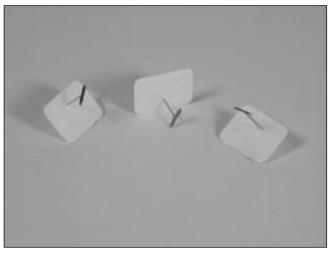
Section 5: Installing the Ailerons

Required Parts

Wing

Aileron (left and right)

• CA hinges (6)

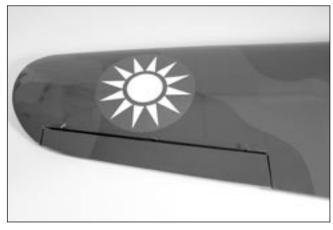

Required Tools and Adhesives

• Thin CA

T-Pins

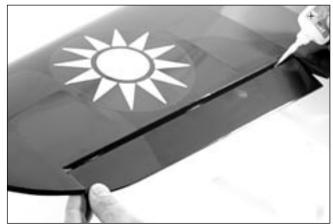
□ □ Step 1

Remove the aileron from the wing. Place a T-pin in the center of each hinge.


□ □ Step 2

Place the hinges in the precut slots in the aileron. The T-pin will rest against the leading edge of the aileron when installed correctly.

□ □ Step 3


Slide the aileron and wing together. The gap between the leading edge of the aileron and wing should be a maximum of approximately 1/64-inch. Check to make sure the gap at both ends of the aileron are equal and that the aileron can move without rubbing on the wing.

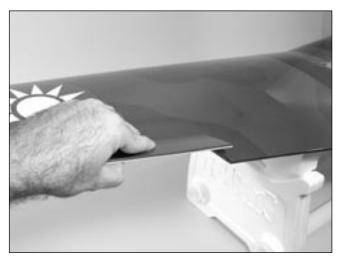
Note: Do not use CA accelerator during the hinging process. The CA must be allowed to soak into the hinge to provide the best bond. Using accelerator will not provide enough time for this process.

□ □ Step 4

Remove the T-Pins and move the aileron to provide the best access to the hinge. Apply thin CA to each hinge. Make sure the hinge is fully saturated with CA. Use a paper towel and CA remover/debonder to clean up any excess CA from the wing and/or aileron. Make sure to apply CA to both sides of the hinges.

Section 5: Installing the Ailerons

□ □ Step 5


Firmly grasp the wing and aileron and gently pull on the aileron to ensure the hinges are secure and cannot be pulled apart. Use caution when gripping the wing and aileron to avoid crushing the structure.

□ □ Step 6

Work the aileron up and down several times to work in the hinges and check for proper movement.

☐ Step 7

Repeat Steps 1 through 6 for the remaining aileron.

Section 6: Installing the Elevators

Required Parts

- Elevator (left and right)
- Elevator joiner wire
- Fuselage assembly
- CA hinge (6)

Required Tools and Adhesives

- Thin CA
- 30-minute epoxy
- Drill
- Hobby knife
- T-pins
- Sandpaper
- Drill bit: 9/64"

□ □ Step 1

Locate one of the elevator halves. Remove the covering from the slot in the elevator.

□ □ Step 2

Locate three CA hinges. Place a T-pin in the center of the hinges. Place the hinges into the elevator half.

□ □ Step 3

Test fit the elevator and stab together. The elevator joiner wire will be inserted into the hole drilled in the elevator.

□ □ Step 4

Lightly sand the joiner wire where it enters the elevator. Mix 1/2 ounce of 30-minute epoxy and apply it to the groove and hole in the elevator half. Insert the elevator joiner wire. Remove any excess epoxy using rubbing alcohol and a paper towel.

Note: You can combine the previous step with the following step if you like. This will hold the elevator in position while the epoxy cures.

Section 6: Installing the Elevators

□ □ Step 5

Check to make sure the elevator moves freely. Check to make sure the hinge gap between the elevator and stabilizer is roughly 1/64-inch. Apply thin CA to both sides of the hinge. Make sure to saturate the hinge and don't use accelerator.

□ □ Step 6

Once the CA and epoxy have fully cured, gently pull on the elevator and stab to make sure the hinges are well glued. Flex the elevators a few times to break-in the hinges.

☐ Step 7

Repeat Steps 1 through 6 to install the remaining elevator half.

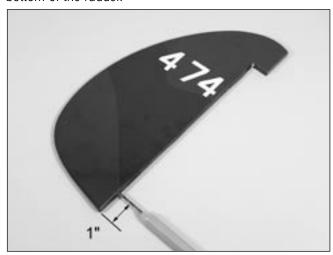
Section 7: Rudder Installation

Required Parts

- Fuselage assembly
- Rudder
- Tail wheel assembly
- Tail wheel bracket
- #2 x 3/8" sheet metal screw (2)

Required Tools and Adhesives

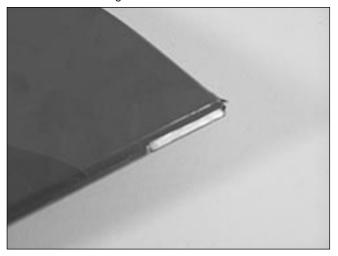
- 6-minute epoxy
- Thin CA


• Drill

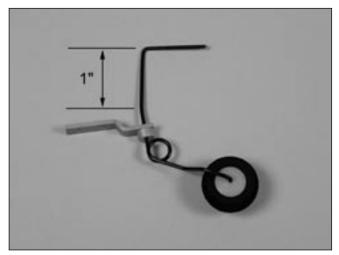
• Drill bit: 1/8"

• T-pins

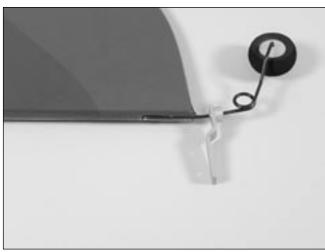
☐ Step 1


Use a 1/8" drill to drill a $1^1/8$ " deep hole 1" from the bottom of the rudder.

Section 7: Rudder Installation


☐ Step 2

Use a hobby knife to cut a groove from the hole drilled in the previous step to the bottom of the rudder. The groove is to recess the tail gear wire.


☐ Step 3

Slide the tail wheel bracket onto the tail gear wire. Measure up 1" from the slight bend in the tail gear wire. Bend the tail gear wire at a 90-degree angle back over the tail wheel.

☐ Step 4

Roughen the tail gear wire using medium grit sandpaper where it will enter the rudder. Use 6-minute epoxy to glue the wire into the rudder.

☐ Step 5

Locate three CA hinges. Place a T-pin in the center of the hinges. Place the hinges into the rudder.

Section 7: Rudder Installation

☐ Step 6

Slide the hinges and rudder into position. Check that the gap between the rudder and fin is roughly 1/64-inch. Apply thin CA to both sides of the hinges. Perform the pull test after the CA has fully cured.

☐ Step 7

Secure the tail wheel bracket to the fuselage using two #2 x 3/8" sheet metal screws.

Section 8: Retract Linkage Installation

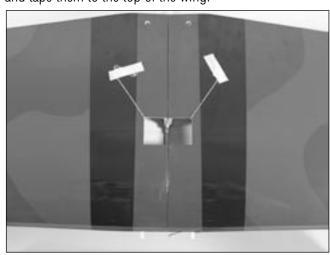
• 31/4" main wheel (2)

• 3mm set screw (4)

Required Parts

- Retract servo tray
- 5/32" wheel collar (4)
- Quick connector washer (2) Quick connector (2)
- Quick connector retainer (2) 2mm wood screw (8)
- Retract servo tray mount (2)
- 8⁷/₈" unthreaded retract wire (2)

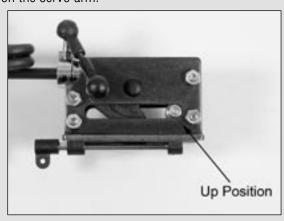
Required Tools and Adhesives

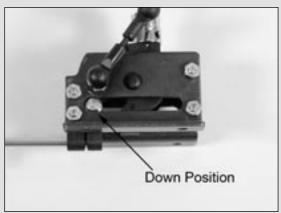

- 6-minute epoxy
- Masking tape
- Hex wrench (included in kit)
 Thick CA
- Retract Servo (JRPS703)
- Hobby knife

Drill

• Drill bit: 1/16", 5/64"

☐ Step 1


Pass the strings for the aileron servos through the holes and tape them to the top of the wing.

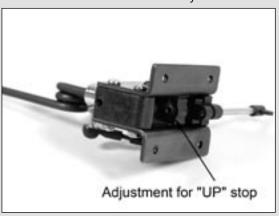


The included mechanical retracts may require some adjustment after around 30 flight to keep them in the best working order. The following clarifies the operation of the retract, as well as how to make future adjustments to keep your retracts working as well as they did when new.


Installation

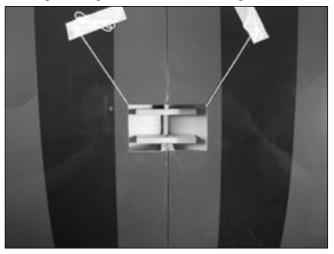
When installing the linkage, make sure the actuator rod is moving to the full up and down positions without binding the servo. Increase the throw by moving the linkage outward on the servo arm. Decrease the throw by moving the linkage inward on the servo arm.

If the servo is binding, it will add extra current draw to the receiver battery and will greatly reduce flight times. Change the location of the linkage at the servo arm inward slightly to eliminate binding.


After flying for around 30 flights, you may notice that the retracts will begin to have a little play. This is normal and can easily be adjusted out. There are two set screws to adjust the up and down stops for these retracts.

Adjustments

Adjust the retract down stop by screwing the set screw in slightly. It will only take a small amount, so start by turning it around 1/16 of a turn. If the set screw is tightened too much, the retract can bind and stall the servo, placing unnecessary current loads on the receiver battery.


Adjust the retract up stop by screwing the set screw in slightly. Again, it only takes a small amount, so start by turning it around 1/16 of a turn. Do not tighten the set screw too much, as the retract can bind and stall the servo, placing unnecessary current loads on the receiver battery.

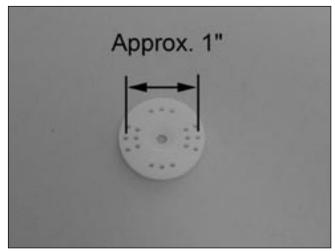
The adjustment procedure is common after about 30 flights, depending on your runway surface. Check the operation of your retracts often to keep them in the best working order. Keep this section handy for future reference for your P-40 Warhawk retracts.

☐ Step 2

Use 6-minute epoxy to glue the two retract servo tray mounts into the wing as shown. They will rest flush with the wing sheeting on the inside of the wing.

☐ Step 3

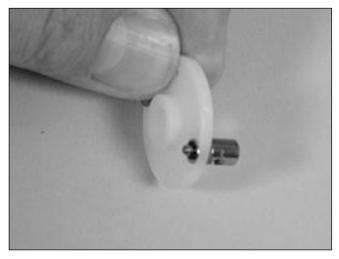
Locate the retract servo tray. Use 6-minute epoxy to glue the servo tray into position.


☐ Step 4

Install a low-profile retract servo in the servo tray using the hardware provided with the servo. Prevent splitting the servo tray by drilling 1/16" holes for the servo mounting screws.

☐ Step 5

Select a servo arm from those included with your servo that has a distance of about 1" between equally spaced holes as shown to start with.



☐ Step 6

Use a 5/64" drill bit to drill the appropriate holes in the arm.


☐ Step 7

Attach two quick connectors to the servo arm using quick connector washers and retainers.

☐ Step 8

Connect the retract servo to your radio system and electronically move the servo to the retracted position. Slide the $8^7/8^{"}$ retract control wires through the quick connectors as shown and secure the servo arm to the retract servo.

☐ Step 9

With the retract servo in the retracted position, push the retract linkage to manually retract the landing gear. Install 3mm set screws into the quick connectors and tighten them to secure the retract linkage.

☐ Step 10

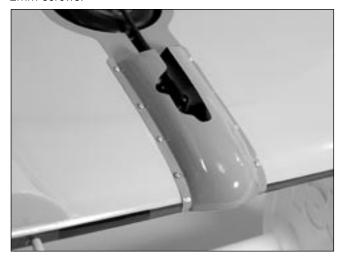
Check the actuation of the retracts, making sure they lock in both the up and down positions. Make any necessary adjustments to the linkages as necessary for proper operation of the retracts. Once complete, double-check all set screws to make sure they are tight. A little threadlock may also be a good suggestion for these set screws as well.

Hint: Adjustments and fine tuning can also be made to the retract linkages from inside the wheel wells.

Remember: It may take some time to get the retracts adjusted so the servo does not stall when the landing gear is up and extended.

□ □ Step 11

Install the wheel well once the retracts have been adjusted. Trim the wheel well to allow for clearance of the retract strut. Roughen the bottom side of the well and surrounding covering using medium sandpaper. Glue the wells using 6-minute epoxy.


Hint: Use clear tape and tape the wells into position when flying from rough surfaces. This will allow easy access to the linkages in case they might need future adjustments.

□ □ Step 12

Locate the gear fairings and trim as shown. Test fit the fairings and use tape to temporarily secure them to the wing. Operate the retracts and check that the struts do not interfere with the fairings. Use a 1/16" drill to drill four holes on each side of the gear fairing. Use a drop or two of thin CA in each hole to harden the underlying balsa.

☐ ☐ **Step 13**Secure the gear fairing to the wing using eight 2mm screws.

□ □ Step 14

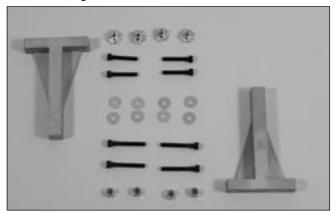
Install a wheel and two wheel collars on the main landing gear. The order of items is 5/32" wheel collar, wheel, and then another wheel collar. Secure the collars using the 3mm set screws.

☐ **Step 15**Repeat Steps 11 through 14 to complete the retract installation.

Section 9: Four-Stroke Engine Installation

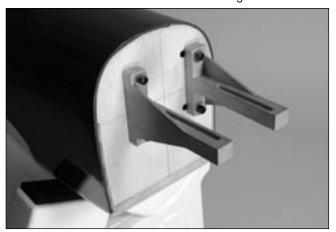
Required Parts

- Fuselage
- 8-32 nylon lock nut (4)
- #8 washer (8)
- Engine mount (2)
- 8-32 blind nut (4)
- 2-56 x 18" pushrod
- Plastic pushrod sleeve (12")
- 8-32 x 1" socket head screw (4)
- 8-32 x 1¹/₄" socket head screw (4)


Required Tools and Adhesives

- Hex Wrench: 9/64"
- RulerEngine
- Socket wrench: 11/32"
- Drill bit: 5/32"
- Felt-tipped pen
- Medium CA

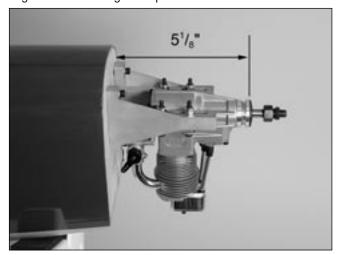
☐ Step 1


Drill

Locate the engine mount and the associated hardware.

☐ Step 2

Temporarily install the engine to the fuselage using four 8-32 x 1" socket head screws, four #8 washers and four blind nuts. Leave the bolts loose enough not to draw the blind nuts into the wood inside the fuselage.

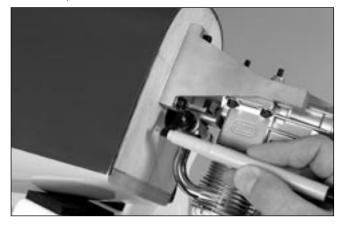

Hint: You can also install the blind nuts backwards to prevent them from pulling into the wood on the backside of the firewall. Just remember to move them to their correct positioning before moving to the next section.

☐ Step 3

Position the engine on the mount and temporarily attach the engine using four $8-32 \times 1^{1}/_{4}$ " socket head screws, four #8 washers and four nylon lock nuts.

☐ Step 4

Position the engine so the front of the drive washer is $5^{1}/_{8}$ " from the firewall. Tighten the bolts holding the engine once the engine is positioned.

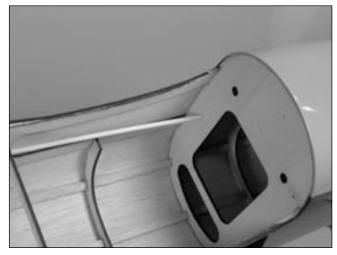

☐ Step 5

Center the engine mount in relationship to the oval holes in the firewall. Tighten the bolts holding the mount to the firewall. (Remember to make sure the barbs on the blind nuts go into the backside of the firewall.)

Section 9: Four-Stroke Engine Installation

☐ Step 6

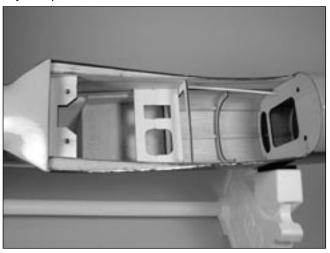
Determine the proper location for the throttle pushrod. Mark the location with a felt-tipped pen. Remove the engine and drill the firewall for the pushrod tube using a drill and 5/32" drill bit.


☐ Step 7

Drill a 5/32" hole in the former with the wing dowel holes that corresponds to the side of the hole drilled in the firewall. Make sure to drill so the pushrod won't interfere with the wing.

☐ Step 8

Test fit the throttle pushrod tube through the firewall, through former 2, and into the fuselage. Once satisfied with the fit, roughen the tube using medium sandpaper. Slide the tube back into position and use medium CA to glue it to the firewall.



Section 9: Four-Stroke Engine Installation

☐ Step 9

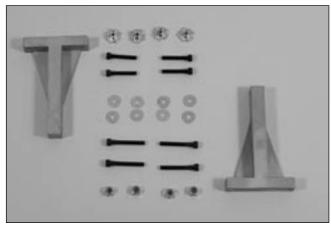
Position the throttle servo tray so the opening for the servo is on the same side of the fuselage as the throttle pushrod tube. Use Medium CA to glue the tray into position.

□ Step 10

Attach the "Z" bend on the throttle pushrod wire onto the carburetor arm. Slide the pushrod wire into the tube and secure the engine to the firewall.

Section 10: Two-Stroke Engine Installation

Required Parts


- Fuselage
- 8-32 nylon lock nut (4)
- #8 washer (8)
- Engine mount (2)
- 8-32 blind nut (4)
- 2-56 x 18" pushrod
- Plastic pushrod sleeve (12")
- 8-32 x 1" socket head screw (4)
- $8-32 \times 1^{1}/_{4}$ " socket head screw (4)

Required Tools and Adhesives

- Hex Wrench: 9/64"
- Socket wrench: 11/32"
- Drill
- Felt-tipped pen
- Ruler
- Engine
- Drill bit: 5/32"
- Medium CA

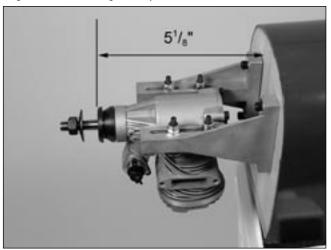
☐ Step 1

Locate the engine mount and the associated hardware.

Section 10: Two-Stroke Engine Installation

☐ Step 2

Temporarily install the engine to the fuselage using four 8-32 x 1" socket head screws, four #8 washers and four blind nuts. Leave the bolts loose enough not to draw the blind nuts into the wood inside the fuselage.


Hint: You can also install the blind nuts backwards to prevent them from pulling into the wood on the backside of the firewall. Just remember to move them to their correct positioning before moving to the next section.

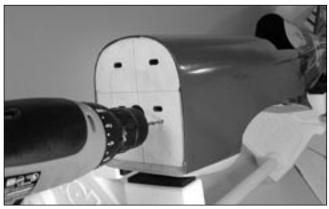
☐ Step 3

Position the engine on the mount and temporarily attach the engine using four $8-32 \times 1^{1}/_{4}$ " socket head screws, four #8 washers and four nylon lock nuts.

☐ Step 4

Position the engine so the front of the drive washer is $5^{1}/_{8}$ " from the firewall. Tighten the bolts holding the engine once the engine is positioned.

☐ Step 5


Center the engine mount in relation to the oval holes in the firewall. Tighten the bolts holding the mount to the firewall. (Remember to make sure the barbs on the blind nuts go into the backside of the firewall.)

Section 10: Two-Stroke Engine Installation

☐ Step 6

Determine the proper location for the throttle pushrod. Mark the location with a felt-tipped pen. Remove the engine and drill the firewall for the pushrod tube using a drill and 5/32" drill bit.

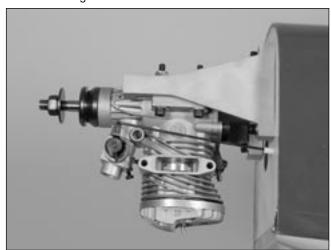

☐ Step 7

Drill a 5/32" hole in the former with the wing dowel holes that corresponds to the side of the hole drilled in the firewall. Make sure to drill so the pushrod won't interfere with the wing.

☐ Step 8

Test fit the throttle pushrod tube through the firewall, through former 2, and into the fuselage. Once satisfied with the fit, roughen the tube using medium sandpaper. Slide the tube back into position and use medium CA to glue it to the firewall.

Section 10: Two-Stroke Engine Installation


☐ Step 9

Position the throttle servo tray so the opening for the servo is on the same side of the fuselage as the throttle pushrod tube. Use Medium CA to glue the tray into position.

□ Step 10

Attach the "Z" bend on the throttle pushrod wire onto the carburetor arm. Slide the pushrod wire into the tube and secure the engine to the firewall.

Section 11: Fuel Tank Assembly

Required Parts

- Clunk (fuel pickup)
- Fuel pickup tubing
- Rubber stopper
- Metal tubes (short and long)
- Fuselage assembly

Required Tools and Adhesives

- Hobby knife
- Fuel tubing

• Metal caps (2)

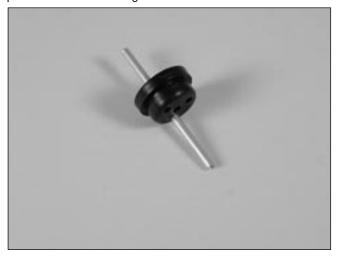
• M3 x 20 screw

Fuel tank

- Foam: 1/4"
- Masking tape
- Phillips screwdriver (small)

Note: The stopper provided with the P-40 has three holes that are not bored completely through the stopper. The holes are for the fuel pickup, fill and vent lines. For these instructions only, two holes will be used: one for the fuel pickup and one for the fuel vent. Only open the third hole if you are going to use a separate fill line.

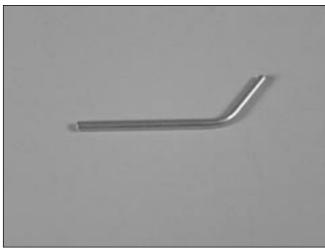
☐ Step 1


Locate the fuel tank parts.

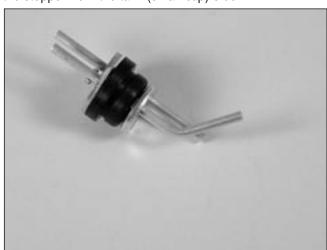
Section 11: Fuel Tank Assembly

☐ Step 2

Locate the rubber stopper. Insert the shorter metal fuel tube into one of the holes in the stopper so that an equal amount of tube extends from each side of the stopper. This tube will be the fuel tank pickup that provides fuel to the engine.


☐ Step 3

Slide the smaller cap over the tube on the smaller end of the rubber stopper. This end will be inserted into the fuel tank. The larger cap is placed on the side of the rubber stopper that makes the cap. Loosely install the M3 x 20 screw through the center of the stopper.


☐ Step 4

Bend the longer fuel tube carefully to a 45-degree angle using your fingers. This will be the fuel tank vent tube. Use care not to kink the tube while bending.

☐ Step 5

Slide the vent tube into one of the remaining two holes in the stopper from the tank (small cap) side.

Section 11: Fuel Tank Assembly

☐ Step 6

Locate the short piece of silicone fuel tubing and the fuel tank clunk. Install the clunk onto one end of the silicone tubing. Slide the silicone tubing (end opposite the clunk) onto the fuel tank pickup tube (straight tube) in the stopper.

☐ Step 7

Carefully insert the stopper assembly into the fuel tank. Note the position of the vent tube; it must be up at the top portion of the fuel tank to function properly. Also, it may be necessary to shorten the length of the fuel pickup tubing to make sure the clunk does not rub against the back of the fuel tank. You should be able to turn the tank to any attitude, and the clunk will fall to the lowest point (all directions except for having the stopper facing down).

Note: The fuel tank is taller than it is wide.

☐ Step 8

Tighten the M3 x 20 screw carefully—do not over-tighten. This allows the rubber stopper to form a seal by being slightly compressed, thus sealing the fuel tank opening.

☐ Step 9

Mark the vent tube on the fuel tank. This will be helpful after the tank has been mounted in the fuselage.

Note: When installing the fuel tank, make sure to have a piece of foam at any point that contacts any structure inside the fuselage. Without the foam, vibrations will be transmitted to the fuel tank, which could cause the fuel to foam. In turn, you will not get the optimum performance from your engine.

Section 11: Fuel Tank Assembly

☐ Step 10

Connect two 8" pieces of fuel tubing for pickup and vent tubes.

□ Step 11

Install the fuel tank into the fuselage. Make any necessary supports to keep the tank from moving during flight. Make sure the vent tube faces towards the top of the fuselage.

Note: Make sure that any support braces installed will not interfere with the installation of the wing or linkages.

□ Step 12

Make the proper connections to the engine, using the engine manufacturer's instructions. If you are using a fourstoke, make sure to route the crankcase vent to the outside of the cowling.

Section 12: Radio Installation

Required Parts

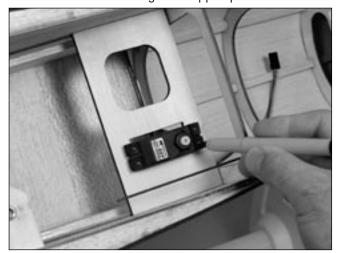
- Fuselage assembly
- Wing assembly
- Servo w/hardware (5)
- #2 x 3/8" screws (8)
- 3/8" x 5/8" x 5/8" servo mounting block (4)

Required Tools and Adhesives

Drill

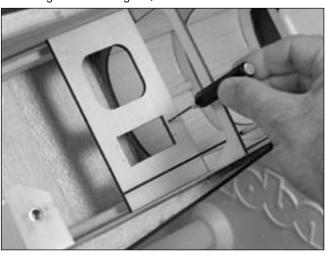
- Drill bit: 1/16", 5/64"
- 6-minute epoxy
- Thin CA
- Felt-tipped pen
- Hobby knife

• Ruler


- Foam: 1/4"
- Phillips screwdriver (small) String
- 12" Servo Extension (JRPA098) (2)
- 18" Servo Extension (JRPA099) (2)
- Large Servo Arms w/Screw (JRPA212)

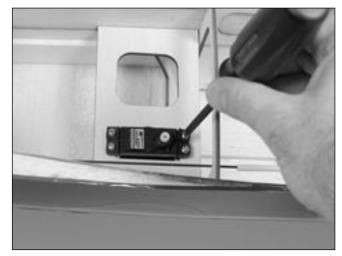
☐ Step 1

Install the recommended servo hardware (grommets and eyelets) supplied with your radio system onto five servos (elevator, rudder, throttle and 2 ailerons).


☐ Step 2

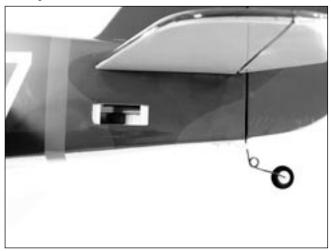
Temporarily install the throttle servo. Mark the locations for the servo screws using a felt-tipped pen.

☐ Step 3

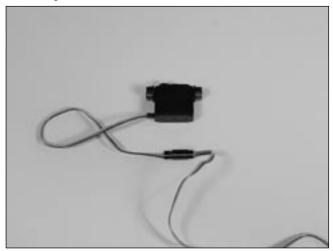

Remove the servo and drill the holes for the servo mounting screws using a 1/16" drill bit.

Hint: Place a drop of thin CA onto each screw hole to harden the wood around the hole. Allow the CA to fully cure before installing the servos.

☐ Step 4

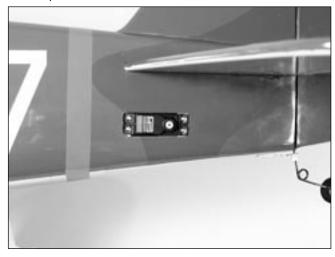

Secure the throttle servo using the screws provided with the servo.

Section 12: Radio Installation


□ □ Step 5

Remove the covering from the opening on the side of the fuselage for the rudder servo.

□ □ Step 6


Connect an 18" Servo Extension (JRPA099) to the servo lead. Secure the connectors by tying them in a knot using dental floss (as shown) or by using a commercially available connector clamp to prevent the servo leads from becoming disconnected.

Note: It is always a good idea to secure the servo connector and servo extension together to prevent the wires from becoming unplugged.

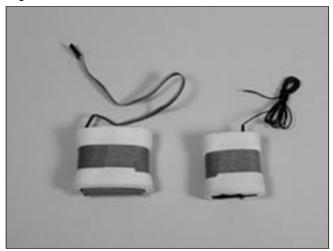
□ □ Step 7

Temporarily install the rudder servo. Mark the locations for the servo screws using a felt-tipped pen. Remove the servo and drill the holes for the servo mounting screws using a 1/16" drill bit. Secure the rudder servo using the screws provided with the servo.

☐ Step 8

Repeat Steps 5 through 7 for the elevator servo.

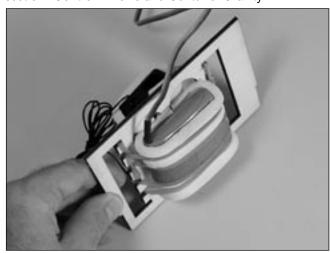
Section 12: Radio Installation

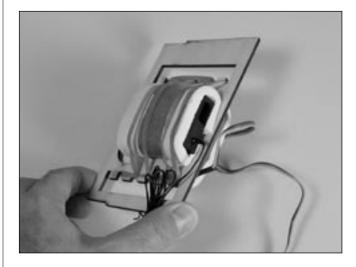

☐ Step 9

Mount the radio switch to the side of the fuselage.

☐ Step 10

Wrap the receiver and receiver battery in protective foam to prevent damage that may be caused by engine vibration.




□ Step 11

Connect any necessary extensions and Y-harnesses necessary to connect the retract and aileron servos. Connect the elevator, rudder and throttle servo leads to the receiver.

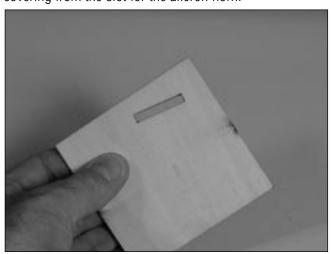
☐ Step 12

Use rubber bands to attach the receiver and battery to the radio tray. It may be necessary to relocate the battery forward or aft to balance the model as described in the section "Control Throws and Center of Gravity."

Section 12: Radio Installation

□ Step 13

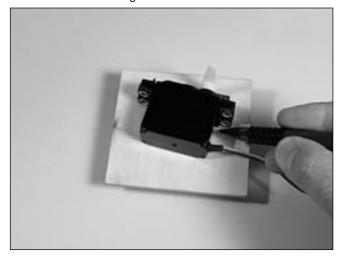
Test fit the radio tray into the fuselage. Note one side is slightly wider, which is positioned under the throttle pushrod. After plugging in all servos and extensions, use medium CA to glue the radio tray into position.



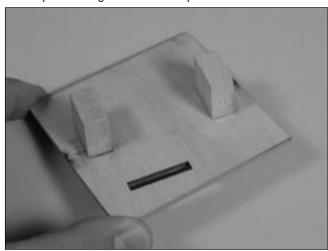
□ □ Step 14

Route the antenna through the bottom of the fuselage and secure it to a location at the tail with rubber bands.

□ □ Step 15

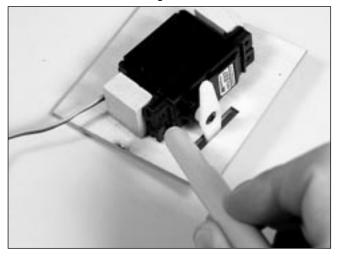

Remove the aileron hatch from the wing. Remove the covering from the slot for the aileron horn.

Note: The aileron servo is mounted directly to the hatch.


□ □ Step 16

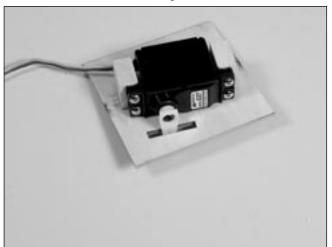
Install the recommended servo hardware (grommets and eyelets) supplied with the servo. Temporarily install a long half servo arm (JRPA212) onto the servo and position the servo onto the hatch so the servo arm is centered in the notch. Once satisfied, mark the location for the servo mounting blocks.

□ □ Step 17

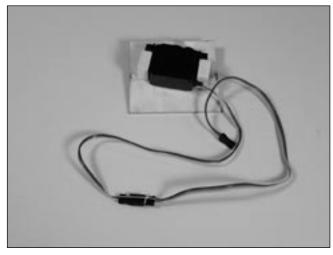

Locate the servo mounting blocks. Use 6-minute epoxy to glue the blocks to the hatch. Let the epoxy fully cure before proceeding to the next step.

Section 12: Radio Installation

□ □ Step 18


Place the aileron servo between the mounting blocks and use a felt-tipped pen to mark the location of the four servo mounting screws. Note that the servo must not touch the hatch in order to isolate engine vibration.

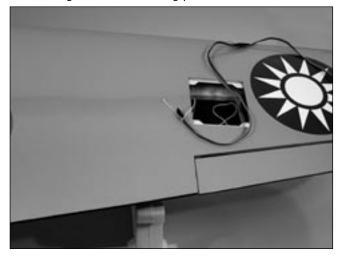
Note: Before mounting the servo, it is suggested to electronically center the servo using the transmitter, then install the servo arm to avoid having to remove the servo and center the arm later. It may be necessary to slightly trim one of the servo mounting blocks to clear the servo wire.

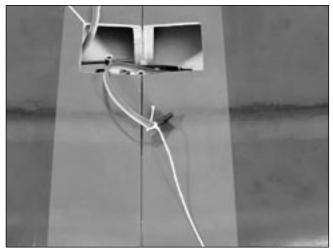

□ □ Step 19

Remove the servo and use a 1/16" drill bit to predrill the holes for the servo mounting screws marked in the previous step. Use the screws supplied with the servo to mount it to the servo mounting blocks.

\square Step 20

Connect a 12" Servo Lead Extension (JRPA098) to the servo lead. Secure the connectors by tying them in a knot using dental floss (as shown) or by using a commercially available connector clamp to prevent the servo leads from becoming disconnected.




Note: It is always a good idea to secure the servo connector and servo extension together to prevent the wires from becoming unplugged.

Section 12: Radio Installation

□ □ Step 21

Tie the preinstalled string onto the servo extension. Gently pull the extension through the wing using the string. Untie the string when the servo lead has been pulled through. Use tape to secure the servo lead to the wing to prevent it from falling back into the wing panel.



□ □ Step 22

Place the hatch cover in position in the aileron opening. Measure in 1/8" on all four sides of the hatch. Drill four 1/16" holes at the intersections of the lines as shown.

Note: Drill through the servo hatch and the underlying hatch mounts. Use caution not to accidentally drill through the top of the wing.

□ □ Step 23

Remove the servo hatch cover and re-drill the holes using a 5/64" drill bit. Use 2–3 drops of thin CA to harden the underlying wood. This will prevent the screws from crushing the wood when they are tightened. Secure the hatch using four #2 x 3/8" screws.

☐ Step 24

Repeat Steps 14 through 23 for the remaining aileron servo.

Required Parts

- Fuselage assembly
- 6" pushrod wire (2)
- Nylon clevis (4)
- Nylon control horn (3)
- Quick connector
- Quick connector backplate
- M3x6 machine screw

Required Tools and Adhesives

Ruler

- Thin CA
- Felt-tipped pen
- Fuel tubing

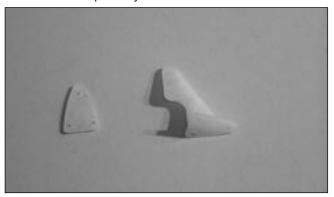
Wing assembly

• 7" pushrod wire (2)

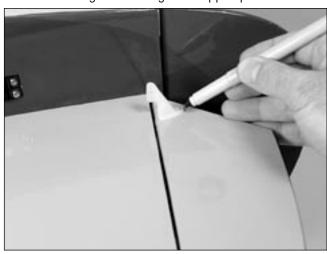
• Nylon wire keeper (4)

• 2-56 x 3/4" screw (6)

- Hobby knife
- Drill
- Drill bit: 1/16", 5/64", 3/32"
- Phillips screwdriver (small)


□ □ Step 1

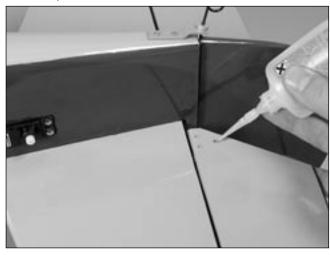
Thread a clevis onto a 7" wire a minimum of 10 turns.


□ □ Step 2

Remove the back plate from a control horn using side cutters or a sharp hobby knife.

□ □ Step 3

Position the control horn on the elevator so the horn aligns with the hinge line of the elevator. Mark the position for the mounting holes using a felt-tipped pen.


□ □ Step 4

Drill three 3/32" holes through the elevator at the locations marked in the previous step.

□ □ Step 5

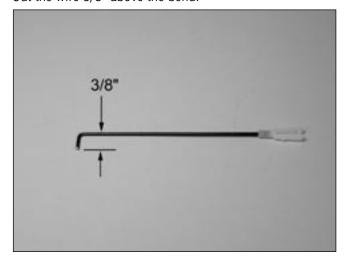
Place 2—3 drops of thin CA into the hole to harden the wood. Repeat this for each of the three holes.

□ □ Step 6

Attach the control horn using three 2-56 x 1/2" screws and the control back plate.

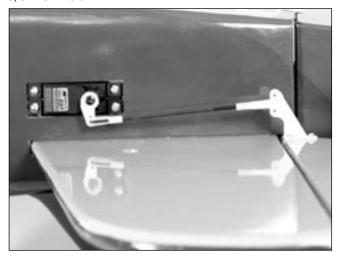
□ □ Step 7

Center the elevator servo electronically using the radio system. Install a servo arm onto the elevator servo. Attach the pushrod with clevis to the control horn. Physically place the elevator control surface in neutral. Mark the pushrod where it crosses the holes in the servo arm.



□ □ Step 8

Bend the wire 90 degrees at the mark made in the previous step.


□ □ Step 9

Cut the wire 3/8" above the bend.

□ □ Step 10

Slide the wire through the outer hole in the elevator servo arm. Secure the wire using a nylon wire keeper. It may be necessary to drill out the hole in the servo arm using a 5/64" drill bit.

Note: Use a 1/4" piece of fuel tubing on the clevis to keep it from opening during flight.

□ Step 11

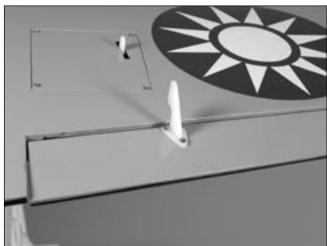
Repeat Steps 1 through 10 for the rudder linkage.

□ Step 12

Remove the back plate from the control horn using side cutters or a sharp hobby knife.

□ Step 13

Position the control horn on the aileron so the horn aligns with the aileron servo horn and the aileron hinge line. Mark the position for the mounting holes using a felt-tipped pen.

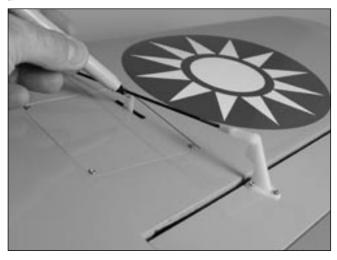


□ Step 14

Drill three 3/32" holes at the locations marked in the previous step.

□ Step 15

Attach the control horn using three 2-56 x 1" screws and the control horn backplate.

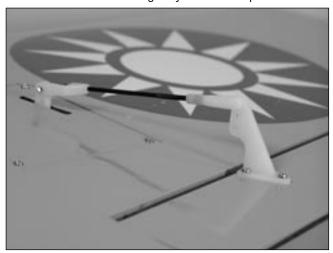


□ □ Step 16

Slide a clevis retainer onto a nylon clevis. Thread a clevis onto a 6" wire a minimum of 10 turns.

□ □ Step 17

Center the aileron servo electronically using the radio system. Attach the pushrod with clevis to the control horn. Physically place the aileron control surface in neutral. Mark the pushrod where it crosses the holes in the servo arm.



□ □ Step 18

Bend the wire 90 degrees at the mark made in the previous step. Cut the wire 3/8" above the bend.

□ □ Step 19

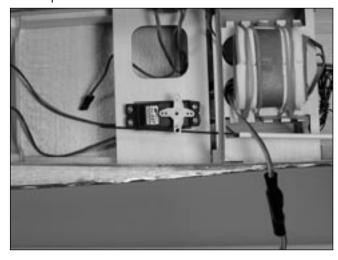
Slide the wire through the outer hole in the aileron servo arm. Secure the wire using a nylon wire keeper.

☐ Step 20

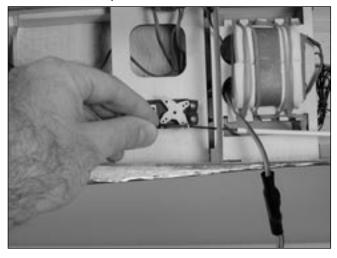
Repeat Steps 16 through 19 for the other aileron servo.

□ Step 21

Use a 5/64" drill bit to drill a hole in the throttle servo arm.


□ Step 22

Attach a quick connector to the servo arm using quick connector washers and retainers.


☐ Step 23

Center the throttle stick and trim with both the receiver and transmitter on. Install the throttle servo arm in the neutral position.

☐ Step 24

Move the servo to the throttle open position using the radio system. Manually move the throttle arm on the carburetor to the open position. Use a 3mm set screw to secure the throttle pushrod wire.

□ Step 25

Check the movement of the throttle to verify there is no binding at either low or high throttle. If there is, make the necessary adjustment to eliminate any binding. Install the throttle servo arm screw when complete.

□ Step 26

Use scrap wood to make a brace for the throttle pushrod tube near the servo.

Section 14: Cowling Installation

Required Parts

- Fuselage assembly
- Cowling
- #4 x 5/8" sheet metal screw (4)

Required Tools and Adhesives

• Drill

- Drill bit: 1/8", 3/32"
- Hobby scissors
- 6-minute epoxy

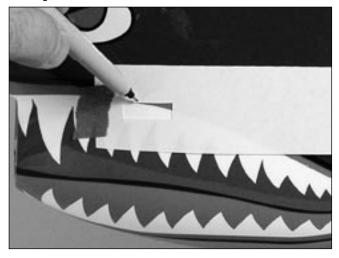
Ruler

- Hobby knife
- Phillips screwdriver (small)
- Rotary tool with sanding drum

☐ Step 1

Use a rotary tool, hobby scissors or hobby knife to remove the material from the air intakes from the front of the cowling.

Section 14: Cowling Installation


☐ Step 2

Use a piece of cardstock to indicate the location of the engine, needle valve, firewall and any other engine related items that will need to be accessed with the cowling on.

☐ Step 2

Remove the engine. Position the cowl onto the fuselage so it is $5^{1}/_{4}$ " from the firewall. Transfer the location for only the engine onto the cowl.

☐ Step 3

Remove the cowl and remove the necessary material to fit the cowl over the engine. Install the engine back onto the firewall, and test fit the cowl over the engine.

Note: Start by removing only a little material at a time. You can always make the holes bigger as you work. Work until the cowl fits nicely over the engine.

☐ Step 4

Slide the cowling onto the fuselage. Temporarily install the propeller and spinner back plate. Position the cowl so there is 1/8" gap between the back plate and the cowl.

☐ Step 5

Locate the screws to secure the cowl 3/4" forward of the edge of the cowl. Drill the locations using a 3/32" drill bit.

☐ Step 6

Enlarge the holes drilled in the cowling using a 1/8" drill bit.

☐ Step 7

Make any cut outs in the cowling to clear items such as the muffler, fueling valve, needle valve, etc.

Section 14: Cowling Installation

☐ Step 8

Attach the cowl using four #4 x 5/8" sheet metal screws.

☐ Step 9

Apply a couple of drops of CA into the screw holes after threading the screws in a couple of times. This will harden the wood and keep the screws from loosening during flight.

□ Step 10

Glue the exhaust stacks to the cowling using 6-minute epoxy.

Section 15: Canopy and Decal Installation

Required Parts

- Fuselage assembly
- Canopy

- Decal
- #2 x 1/2" sheet metal screw (2)

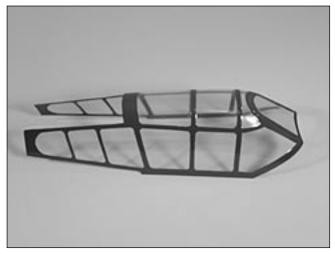
Required Tools and Adhesives

- Canopy glue (Formula 560)
- Sandpaper (medium grit)
- Hobby scissors
- Zap-A-Dap-A-Goo
- 6-minute epoxy

☐ Step 1

Paint and install a pilot of your choosing. Use epoxy or Zap-A-Dap-A-Goo to secure the pilot.

☐ Step 2


Use hobby scissors to trim the backrest. Use Zap-A-Dap-A-Goo to glue the backrest into position.

Section 15: Canopy and Decal Installation

☐ Step 3

Use Lexan scissors to trim the canopy.

☐ Step 2

Position the canopy onto the fuselage. Trace around the canopy and onto the fuselage using a felt-tipped pen.

☐ Step 3

Lightly sand the inside edge of the canopy and slightly inside the line drawn on the hatch using medium sandpaper.

☐ Step 4

Apply a bead of RCZ56 Canopy Glue (ZINJ5007) around the inside edge of the canopy. Position the canopy onto the hatch. Use tape to hold the canopy secure until the glue fully cures.

☐ Step 5

Apply the decals. Use the photos on the box to aid in their location.

Adjusting the Engine

☐ Step 1

Completely read the instructions included with your engine and follow the recommended break-in procedure.

☐ Step 2

At the field, adjust the engine to a slightly rich setting at full throttle and adjust the idle and low-speed needle so that a consistent idle is achieved.

☐ Step 3

Before you fly, be sure that your engine idles reliably, transitions and runs at all throttle settings. Only when this is achieved should any plane be considered ready for flight.

Control Throws

The amount of control throw should be adjusted as closely as possible using mechanical means, rather than making large changes electronically at the radio. By moving the position of the clevis at the control horn toward the outermost hole, you will decrease the amount of control throw of the control surface. Moving it toward the control surface will increase the amount of throw. Moving the pushrod wire at the servo arm will have the opposite effect: Moving it closer to center will decrease throw, and away from center will increase throw. Work with a combination of the two to achieve the closest or exact control throws listed.

Aileron	High 5/8" (19°) Up 5/8" (19°) Down	Low 1/2" (14°) Up 1/2" (14°) Down
Elevator	1 ¹ / ₈ " (18°) Up 1 ¹ / ₈ " (18°) Down	1" (15°) Up 1" (15°) Down
Rudder	1 ¹ / ₂ " (20°) Right 1 ¹ / ₂ " (20°) Left	

Note: Control throws are measured at the widest part of the elevator, rudder, and aileron unless noted otherwise.

Recommended CG

An important part of preparing the aircraft for flight is properly balancing the model. This is especially important when various engines are mounted.

Caution: Do not inadvertently skip this step!

The recommended Center of Gravity (CG) location for the P-40 is 3" behind the leading edge of the wing against the fuselage. Make sure the gear is retracted when checking the CG, as the CG will change depending on the gear position. If necessary, move the battery pack or add weight to either the nose or the tail until the correct balance is achieved. Stick-on weights are available at your local hobby store and work well for this purpose.

If you are planning on flying with the retracts permanently down, balance the P-40 $2^3/_8$ " behind the leading edge at the fuselage.

Preflight

Charge both the transmitter and receiver pack for your airplane. Use the recommended charger supplied with your particular radio system, following the instructions provided with the radio. In most cases the radio should be charged the night before going out flying.

Check the radio installation and make sure all the control surfaces are moving correctly (i.e. the correct direction and with the recommended throws). Test run the engine and make sure it transitions smoothly from idle to full throttle and back. Also ensure the engine is tuned according to the manufacturers instructions, and it will run consistently and constantly at full throttle when adjusted.

Check all the control horns, servo horns and clevises to make sure they are secure and in good condition. Replace any items that would be considered questionable. Failure of any of these components in flight would mean the loss of your aircraft.

Range Testing the Radio

Before each flying session, range-check your radio. This is accomplished by turning on your transmitter with the antenna collapsed. Turn on the radio in your airplane. With your airplane on the ground, you should be

able to walk 30 paces away from your airplane and still have complete control of all functions. If not, don't attempt to fly! Have your radio equipment checked out by the manufacturer.

2004 Official AMA National Model Aircraft Safety Code

GENERAL

- 1) I will not fly my model aircraft in sanctioned events, air shows or model flying demonstrations until it has been proven to be airworthy by having been previously, successfully flight tested.
- 2) I will not fly my model higher than approximately 400 feet within 3 miles of an airport without notifying the airport operator. I will give right-of-way and avoid flying in the proximity of full-scale aircraft. Where necessary, an observer shall be utilized to supervise flying to avoid having models fly in the proximity of full-scale aircraft.
- 3) Where established, I will abide by the safety rules for the flying site I use, and I will not willfully and deliberately fly my models in a careless, reckless and/ or dangerous manner.
- 4) The maximum takeoff weight of a model is 55 pounds, except models flown under Experimental Aircraft rules.
- 5) I will not fly my model unless it is identified with my name and address or AMA number, on or in the model. (This does not apply to models while being flown indoors.)
- 6) I will not operate models with metal-bladed propellers or with gaseous boosts, in which gases other than air enter their internal combustion engine(s); nor will I operate models with extremely hazardous fuels such as those containing tetranitromethane or hydrazine.

- 7) I will not operate models with pyrotechnics (any device that explodes, burns, or propels a projectile of any kind) including, but not limited to, rockets. explosive bombs dropped from models, smoke bombs, all explosive gases (such as hydrogen-filled balloons), or ground mounted devices launching a projectile. The only exceptions permitted are rockets flown in accordance with the National Model Rocketry Safety Code or those permanently attached (as per JATO use): also those items authorized for Air Show Team use as defined by AST Advisory Committee (document available from AMA HQ). In any case, models using rocket motors as a primary means of propulsion are limited to a maximum weight of 3.3 pounds and a G series motor. (A model aircraft is defined as an aircraft with or without engine, not able to carry a human being.)
- 8) I will not consume alcoholic beverages prior to, nor during, participation in any model operations.
- 9) Children under 6 years old are only allowed on the flight line as a pilot or while receiving flight instruction.

RADIO CONTROL

- 1) I will have completed a successful radio equipment ground range check before the first flight of a new or repaired model.
- 2) I will not fly my model aircraft in the presence of spectators until I become a qualified flier, unless assisted by an experienced helper.
- 3) At all flying sites a straight or curved line(s) must be established in front of which all flying takes place with the other side for spectators. Only personnel involved with flying the aircraft are allowed at or in the front of the flight line. Intentional flying behind the flight line is prohibited.
- 4) I will operate my model using only radio control frequencies currently allowed by the Federal Communications Commission. (Only properly licensed Amateurs are authorized to operate equipment on Amateur Band frequencies.)

2004 Official AMA National Model Aircraft Safety Code

- 5) Flying sites separated by three miles or more are considered safe from site-to site interference, even when both sites use the same frequencies. Any circumstances under three miles separation require a frequency management arrangement, which may be either an allocation of specific frequencies for each site or testing to determine that freedom from interference exists. Allocation plans or interference test reports shall be signed by the parties involved and provided to AMA Headquarters. Documents of agreement and reports may exist between (1) two or more AMA Chartered Clubs, (2) AMA clubs and individual AMA members not associated with AMA Clubs, or (3) two or more individual AMA members. 6) For Combat, distance between combat engagement line and spectator line will be 500 feet per cubic inch of engine displacement. (Example: .40 engine = 200 feet.); electric motors will be based on equivalent combustion engine size. Additional safety requirements will be per the RC Combat section of the current Competition Regulations.
- 7) At air shows or model flying demonstrations, a single straight line must be established, one side of which is for flying, with the other side for spectators.
- 8) With the exception of events flown under AMA Competition rules, after launch, except for pilots or helpers being used, no powered model may be flown closer than 25 feet to any person.
- 9) Under no circumstances may a pilot or other person touch a powered model in flight.

Organized RC Racing Event

10) An RC racing event, whether or not an AMA Rule Book event, is one in which model aircraft compete in flight over a prescribed course with the objective of finishing the course faster to determine the winner.

A. In every organized racing event in which contestants, callers and officials are on the course:

- 1. All officials, callers and contestants must properly wear helmets, which are OSHA, DOT, ANSI, SNELL or NOCSAE approved or comparable standard while on the racecourse.
- 2. All officials will be off the course except for the starter and their assistant.
- 3."On the course" is defined to mean any area beyond the pilot/staging area where actual flying takes place.
- B. I will not fly my model aircraft in any organized racing event which does not comply with paragraph A above or which allows models over 20 pounds unless that competition event is AMA sanctioned.
- C. Distance from the pylon to the nearest spectator (line) will be in accordance with the current Competition Regulations under the RC Pylon Racing section for the specific event pending two or three pylon course layout.
- 11) RC night flying is limited to low-performance models (less than 100 mph). The models must be equipped with a lighting system that clearly defines the aircraft's attitude at all times.

© 2005 Horizon Hobby, Inc. 4105 Fieldstone Road Champaign, Illinois 61822 (877) 504-0233

www.horizonhobby.com